
5G—微波技術(shù)展望
發(fā)布時(shí)間:2017-06-02 來(lái)源:Thomas Cameron 責(zé)任編輯:wenwei
【導(dǎo)讀】隨著5G技術(shù)的出現(xiàn),現(xiàn)在成為一名RF工程師是一件令人激動(dòng)的事情。在我們通往5G——下一代無(wú)線(xiàn)通信系統(tǒng)——的道路上,工程設(shè)計(jì)社區(qū)有著數(shù)不清的挑戰(zhàn)和機(jī)遇。5G代表著移動(dòng)技術(shù)的演進(jìn)和革命,已達(dá)到無(wú)線(xiàn)生態(tài)系統(tǒng)各個(gè)成員迄今發(fā)布的多項(xiàng)高級(jí)別目標(biāo)。
普遍認(rèn)為5G是一代能讓蜂窩網(wǎng)絡(luò)擴(kuò)展至全新使用案例和垂直市場(chǎng)的無(wú)線(xiàn)技術(shù)。雖然5G一般用來(lái)提供超寬帶服務(wù)——包括高清和超高清視頻流——5G技術(shù)將還可以讓蜂窩網(wǎng)絡(luò)進(jìn)入機(jī)器世界。它將造福于無(wú)人駕駛汽車(chē),并用來(lái)連接數(shù)以百萬(wàn)計(jì)的工業(yè)傳感器以及各種可穿戴消費(fèi)電子設(shè)備——此處僅列舉了其中的部分應(yīng)用。
通往5G的革命性道路包括逐步增強(qiáng)傳統(tǒng)蜂窩頻段中的4G,并在頻率上擴(kuò)展到3 GHz至6 GHz范圍的新興頻段。大規(guī)模MIMO具有迅猛的行業(yè)發(fā)展勢(shì)頭,并將從基于LTE的首款系統(tǒng),演進(jìn)至采用針對(duì)改善吞吐速率、延遲和蜂窩效率而設(shè)計(jì)的全新波形。
蜂窩行業(yè)將頻譜視為一切的根本,但傳統(tǒng)蜂窩頻段(sub-6 GHz)的頻譜無(wú)法滿(mǎn)足未來(lái)幾年內(nèi)指數(shù)級(jí)增長(zhǎng)的需要。因此,目前正在研究超過(guò)6 GHz的頻段,以便測(cè)試在6 GHz以上頻率分配部署無(wú)線(xiàn)接入的可行性。全球6 GHz以下的總頻譜約為數(shù)百M(fèi)Hz,而20 GHz以上的潛在頻譜則是數(shù)十GHz。掌握這種頻譜對(duì)于實(shí)現(xiàn)真正互連的世界這一5G愿景來(lái)說(shuō)至關(guān)重要。
因此,某個(gè)5G頻段的工作頻率也許要高很多(可能高達(dá)毫米波),并有可能采用無(wú)法向后兼容LTE的最新空中接口技術(shù)。主要的行業(yè)參與者探討的頻段包含較高的頻段,比如10 GHz、28 GHz、32 GHz、43 GHz、46 GHz至50 GHz、56 GHz至76 GHz以及81 GHz至86 GHz。然而,這些頻段目前尚處于提議階段,在進(jìn)入無(wú)線(xiàn)系統(tǒng)定義和標(biāo)準(zhǔn)審議階段之前,通道建模還有很多工作需要完成。ITU最近發(fā)布了5G標(biāo)準(zhǔn)化計(jì)劃,目標(biāo)定于2020年前后發(fā)布第一代IMT-2020規(guī)格。
考慮到5G尚處于起步階段,在部署第一個(gè)商用系統(tǒng)之前還需完成通道建模、無(wú)線(xiàn)架構(gòu)定義,以及最終的芯片組開(kāi)發(fā)。但是,目前已經(jīng)就某些趨勢(shì)和要求達(dá)成了一致,待一些問(wèn)題解決后終將催生出5G系統(tǒng)。
讓我們看一下微波和毫米波頻段的5G接入系統(tǒng)。在微波頻率下實(shí)施無(wú)線(xiàn)接入的最大障礙之一是克服不理想的傳播特性。這些頻段下的無(wú)線(xiàn)傳播在很大程度上受到大氣衰減、下雨、障礙物(建筑、人群、植物)以及反射的影響。微波點(diǎn)對(duì)點(diǎn)鏈路已部署多年,但這些鏈路基本上都是視距系統(tǒng)。這些鏈路的靜態(tài)特性使其易于管理,且系統(tǒng)是最近幾年才發(fā)展起來(lái)的,其利用高階調(diào)制方案,支持極高的吞吐速率。該項(xiàng)技術(shù)正在不斷演進(jìn)中;我們將在5G接入中采用微波鏈路技術(shù)。
最初,人們認(rèn)識(shí)到,若要克服接入系統(tǒng)的傳播難題,就需要采用自適應(yīng)波束成形。與點(diǎn)對(duì)點(diǎn)系統(tǒng)不同,波束成形需適應(yīng)用戶(hù)和環(huán)境,以便向用戶(hù)提供有效負(fù)載。業(yè)界的普遍共識(shí)是:混合MIMO系統(tǒng)將用于微波和低毫米波頻段,而在V頻段和E頻段中——帶寬充足——系統(tǒng)可能僅采用波束成形來(lái)實(shí)現(xiàn)所需的吞吐速率目標(biāo)。

圖1. 混合波束成形發(fā)射器功能框圖
圖1顯示了混合波束成形發(fā)射器的高級(jí)功能框圖。該圖反過(guò)來(lái)看便是接收器功能框圖。MIMO編碼在數(shù)字部分執(zhí)行,此外還進(jìn)行典型數(shù)字無(wú)線(xiàn)電處理??赡苡卸鄺l各種數(shù)據(jù)流饋入天線(xiàn)系統(tǒng)的MIMO路徑會(huì)在數(shù)字部分進(jìn)行處理。針對(duì)每一個(gè)數(shù)據(jù)流,DAC都會(huì)在基帶或中頻(具體取決于所選架構(gòu))將數(shù)字信號(hào)轉(zhuǎn)換為模擬信號(hào)。信號(hào)經(jīng)過(guò)上變頻和分路處理后,通過(guò)各自的RF通道饋入各個(gè)天線(xiàn)。在每條RF通道上,信號(hào)配置不同的增益和相位,形成波束并從天線(xiàn)發(fā)出。
雖然功能框圖很簡(jiǎn)單,但系統(tǒng)挑戰(zhàn)和權(quán)衡取舍卻很復(fù)雜。在這篇篇幅較短的文章中,我們僅討論了部分問(wèn)題,主要關(guān)注架構(gòu)和無(wú)線(xiàn)方面的挑戰(zhàn)。從最開(kāi)始,到最終實(shí)現(xiàn)系統(tǒng),重要的是須時(shí)刻關(guān)注系統(tǒng)的功率、尺寸和成本。
雖然目前這類(lèi)無(wú)線(xiàn)電可以、并且正在使用ADI及其同行公司的分立式(主要是GaAs)器件針對(duì)原型5G系統(tǒng)進(jìn)行搭建,我們尚需像部署蜂窩無(wú)線(xiàn)電那樣在微波領(lǐng)域?qū)崿F(xiàn)同樣的高集成度。高集成度和高性能是行業(yè)需要解決的難題。
但僅靠集成度無(wú)法解決業(yè)界所面臨的問(wèn)題。我們需要智能集成。說(shuō)到集成度,為了利用集成優(yōu)勢(shì),我們需要首先考慮架構(gòu)和分割。這種情況下,還需要考慮到機(jī)械和散熱設(shè)計(jì),因?yàn)殡娐凡季趾突迨窍⑾⑾嚓P(guān)的。
首先,需要定義有利于集成的架構(gòu)。對(duì)于蜂窩基站的高度集成式收發(fā)器IC而言,很多人采用零中頻(ZIF)架構(gòu)以消除或最大程度減少信號(hào)路徑上的濾波器。尤其在微波頻率,必須最大程度減少RF濾波器損耗,因?yàn)楫a(chǎn)生RF功率的成本十分高昂。雖然ZIF會(huì)減少濾波器問(wèn)題——當(dāng)然是以降低LO抑制性能為代價(jià)——但我們把問(wèn)題從物理結(jié)構(gòu)轉(zhuǎn)移到了信號(hào)處理和算法上。這里可以借鑒摩爾定律,因?yàn)闊o(wú)源微波結(jié)構(gòu)不遵循這種動(dòng)態(tài)調(diào)整規(guī)律。要實(shí)現(xiàn)目標(biāo),就必須利用可同步優(yōu)化模擬和數(shù)字的優(yōu)勢(shì)。蜂窩頻率有很多算法與電路技術(shù)可供微波領(lǐng)域借鑒。
接下來(lái)討論半導(dǎo)體技術(shù)要求。正如前文所述,一流的微波系統(tǒng)通常采用GaAs元件實(shí)現(xiàn)。GaAs多年來(lái)一直是微波行業(yè)的主流技術(shù),但SiGe工藝正在克服高頻工作障礙,以便在多項(xiàng)信號(hào)路徑功能上與GaAs一較高下。高性能微波SiGe Bi CMOS工藝具有這些波束成形系統(tǒng)所需的高集成度,惠及很多信號(hào)鏈以及輔助控制功能。
取決于每個(gè)天線(xiàn)所需的輸出功率,可能需要采用GaAs PA。然而,在微波頻率下甚至GaAs PA都效率較低,因?yàn)樗鼈冊(cè)诰€(xiàn)性區(qū)域內(nèi)通常會(huì)發(fā)生偏移。微波PA的線(xiàn)性化是探索5G時(shí)代的必然選擇,此趨勢(shì)相比過(guò)去有過(guò)之而無(wú)不及。
那么CMOS又如何呢? 能否占有一席之地? 各種文檔都已明確指出,CMOS適合大規(guī)模調(diào)整,這點(diǎn)在60 GHz的WiGig系統(tǒng)中已經(jīng)得到了驗(yàn)證??紤]到目前尚處于開(kāi)發(fā)的早期階段,且使用案例也不甚明確,因而很難說(shuō)CMOS是否、或者何時(shí)會(huì)用作5G無(wú)線(xiàn)電的技術(shù)選擇。首先必須完成很多通道建模和使用案例方面的工作,以便總結(jié)無(wú)線(xiàn)電規(guī)格以及未來(lái)使用微波CMOS的可行性。
5G系統(tǒng)的最后一個(gè)考慮因素是機(jī)械設(shè)計(jì)和RF IC分割的相互依賴(lài)性。由于最小化損耗方面的難題,IC需要采用天線(xiàn)和基板設(shè)計(jì),并考慮分割優(yōu)化。在50 GHz以?xún)?nèi),天線(xiàn)將是基板的一部分,并且預(yù)期路由和部分無(wú)源結(jié)構(gòu)可能內(nèi)嵌到基板上。目前有研究機(jī)構(gòu)正在研究基板集成波導(dǎo)(SIW)領(lǐng)域,似乎有望實(shí)現(xiàn)此種集成結(jié)構(gòu)。這種結(jié)構(gòu)將可能在多層層壓的一側(cè)安裝很多RF電路,并路由至前端的天線(xiàn)。RF IC可以以裸片的形式或表貼封裝的形式安裝在這種層壓結(jié)構(gòu)上。在行業(yè)文獻(xiàn)中,將這種結(jié)構(gòu)用于其它應(yīng)用有著很好的先例。
超過(guò)50 GHz時(shí),天線(xiàn)元素和間距就會(huì)變得足夠小,可將天線(xiàn)結(jié)構(gòu)封裝在內(nèi),或集成到封裝上。同樣,這是目前正在研究的方向,它可能推動(dòng)5G系統(tǒng)的發(fā)展。
無(wú)論如何,RF IC和機(jī)械結(jié)構(gòu)都必須一并設(shè)計(jì),確保路由的對(duì)稱(chēng)性,并最大程度減少損耗。如果沒(méi)有強(qiáng)大的3D建模工具來(lái)進(jìn)行這些設(shè)計(jì)所需的大量仿真,那么這些工作一項(xiàng)都不可能完成。
雖然本文擇要介紹了5G為微波行業(yè)帶來(lái)的挑戰(zhàn),但在未來(lái)數(shù)年內(nèi),仍有數(shù)不清的機(jī)遇推動(dòng)RF創(chuàng)新。正如前文所述,嚴(yán)格的系統(tǒng)工程通過(guò)在整個(gè)信號(hào)鏈中采用最好的技術(shù)實(shí)現(xiàn)最佳的解決方案。從整個(gè)行業(yè)來(lái)看,從工藝和材料開(kāi)發(fā)到設(shè)計(jì)技巧和建模,再到高頻測(cè)試和制造,仍有很多工作需要完成。在實(shí)現(xiàn)5G目標(biāo)的道路上,所有學(xué)科都將參與其中。
ADI公司借助其獨(dú)有的位到微波功能,為5G微波作出了諸多貢獻(xiàn)。ADI豐富的技術(shù)產(chǎn)品組合以及不斷進(jìn)步的RF技術(shù)與無(wú)線(xiàn)電系統(tǒng)工程的深厚歷史相結(jié)合,使我們處于領(lǐng)先地位,帶領(lǐng)我們的客戶(hù)為新興的5G系統(tǒng)開(kāi)拓新的微波和毫米波頻率解決方案。
正如本文開(kāi)頭所述,現(xiàn)在成為一名無(wú)線(xiàn)領(lǐng)域的RF工程師是一件令人激動(dòng)的事情。5G才剛剛起步,我們還需要完成大量工作才能在2020年以前實(shí)現(xiàn)商用5G無(wú)線(xiàn)電網(wǎng)絡(luò)。
推薦閱讀:
特別推薦
- 音頻放大器的 LLC 設(shè)計(jì)注意事項(xiàng)
- 服務(wù)器電源設(shè)計(jì)中的五大趨勢(shì)
- 電子技術(shù)如何助力高鐵節(jié)能?
- 利用創(chuàng)新FPGA技術(shù):實(shí)現(xiàn)USB解決方案的低功耗、模塊化與小尺寸
- 加速度傳感器不好選型?看這6個(gè)重要參數(shù)!
- 功率器件熱設(shè)計(jì)基礎(chǔ)(十三)——使用熱系數(shù)Ψth(j-top)獲取結(jié)溫信息
- IGBT并聯(lián)設(shè)計(jì)指南,拿下!
技術(shù)文章更多>>
- 解鎖AI設(shè)計(jì)潛能,ASO.ai如何革新模擬IC設(shè)計(jì)
- 汽車(chē)拋負(fù)載Load Dump
- 50%的年長(zhǎng)者可能會(huì)聽(tīng)障?!救贖的辦法在這里
- ADI 多協(xié)議工業(yè)以太網(wǎng)交換機(jī)
- 攻略:7種傾斜傳感器的設(shè)計(jì)選擇
技術(shù)白皮書(shū)下載更多>>
- 車(chē)規(guī)與基于V2X的車(chē)輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車(chē)安全隔離的新挑戰(zhàn)
- 汽車(chē)模塊拋負(fù)載的解決方案
- 車(chē)用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門(mén)搜索
功率電阻
功率放大器
功率管
功率繼電器
功率器件
共模電感
固態(tài)盤(pán)
固體繼電器
光傳感器
光電池
光電傳感器
光電二極管
光電開(kāi)關(guān)
光電模塊
光電耦合器
光電器件
光電顯示
光繼電器
光控可控硅
光敏電阻
光敏器件
光敏三極管
光收發(fā)器
光通訊器件
光纖連接器
軌道交通
國(guó)防航空
過(guò)流保護(hù)器
過(guò)熱保護(hù)
過(guò)壓保護(hù)